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INTRODUCTION

The Mw 6.6 Lushan earthquake (hereafter referred to as the
Lushan earthquake) occurred in the early morning on 20 April
2013 (Fig. 1). The earthquake caused more than 200 casualties,
injured more than ten thousand people, and caused huge
economic loss. This event was the most damaging earthquake
in China since the 2008M 8.0 Wenchuan earthquake and the
2010 M 7.1 Yushu earthquake.

The Lushan earthquake was widely felt as far as 500 km
away, in an area of almost 1 million square kilometers. The area
that suffered damage is also substantial (∼20; 000 square
kilometers). After five days of intensive field investigation,
the intensity map was officially released based on the observed
damage (http://www.cea.gov.cn/publish/dizhenj/464/478/
20130425153642550719811/index.html, last accessed Novem-
ber 2013). The intensity map showed a northeast–southwest
strike, and the maximum intensity was IX. The lengths of the
long axis and short axis for the meizoseismal area are nearly 23
and 11 km, respectively, which agree well with rupture-process
inversion results (Wang et al., 2013).

The mainshock was well recorded by both local and global
seismic networks, and the epicenter is located at latitude
30.3° N and longitude 103.0° E, which is about 80 km to the
southwest of the epicenter of the 2008 Wenchuan earthquake.
The shock occurred between the Pengguan fault (F3) and Dayi
fault (F4) in the northeast-trending Longmenshan fault system
(Fig. 1). The Longmenshan fault system lies along the eastern
margin of the Tibetan plateau as a result of crustal extrusion
against strong lithosphere of the Sichuan basin, which is part of
the Yangtze block (Xu et al., 2008). The Longmenshan fault
system consists of four major faults from west to east, including
theWenchuan–Maowen fault, Beichuan fault, Pengguan fault,
and Dayi fault (Densmore et al., 2005). The unilateral rupture
of theWenchuan earthquake occurred along the Beichuan and

Pengguan faults, and started at Yingxiu and propagated north-
eastward to Qingchuan (Zhang et al., 2009). Although studies
involving Coulomb Failure Stress suggest that earthquake
hazard on the fault segments where the Lushan earthquake
occurred should be enhanced after the Wenchuan earthquake
(Parsons et al., 2008), the community in the epicentral area was
not well prepared for a big earthquake before the fifth
anniversary of the Wenchuan earthquake.

Here, we report the preliminary results on the Lushan
earthquake including relocation of aftershocks and source
parameters of the mainshock and two large aftershocks. These
results are helpful for understanding seismogenic and rupture
processes of the earthquake.

SOURCE PARAMETERS OF THE MAINSHOCK

The double-couple solution of the mainshock was determined
using the Cut-and-Paste algorithm (Zhao and Helmberger,
1994; Zhu and Helmberger, 1996). In the inversion, we used
local seismograms from the China National Seismic Network
(CNSN; Zheng et al., 2010). Although nearly all the broadband
stations within 250 km from the epicenter are clipped because
of the large magnitude of the mainshock, P waves are still avail-
able for modeling at these distances. At larger distances, both
Pnl and surface waves are well recorded (Fig. 2a).

The mainshock occurred near the boundary between the
Eastern Tibet plateau and the Sichuan basin, across which sub-
stantial differences in crustal structure have been reported
(Wang et al., 2007; Li et al., 2012; Zhang et al., 2012). To
account for lateral variation, we chose two 1D velocity models
for computing Green’s functions for paths in plateau and basin,
respectively (Fig. 2b). The plateau model is taken from Zheng
et al. (2009) and the basin model from Xie et al. (2012). Ⓔ
Tables S1 and S2 (available as an electronic supplement to this
paper) display the plateau and basin models, respectively. These
velocity models are found to be effective in the focal mecha-
nism inversions of theWenchuan earthquake sequence and the
2010 Suining earthquake in Sichuan basin (Zheng et al., 2009;
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Luo et al., 2011). The Green’s functions were calculated with
the frequency–wavenumber (f �k) technique (Zhu and Rivera,
2002) based on these two 1D models.

In the inversion, both the Pnl and surface-wave segments
are bandpass filtered between 0.02 and 0.1 Hz. The 0.1 Hz
frequency is probably low enough to account for the finite
duration of the mainshock (∼Mw 6.6) according to scaling
laws by Somerville et al. (1999). As displayed in Figure 2, the
best waveform match is achieved at the depth of 12 km with
the estimated magnitude Mw 6.7, which is consistent with
NEIC and Global CMT results (Mw 6.6). The high cross-
correlation coefficients (CCCs) between the synthetics and
data suggest that the source parameters are well resolved. The
strike, dip, and rake of the focal mechanism are 210°/47°/97°,
respectively, and the auxiliary nodal plane solution is 20°/43°/
83°. The focal mechanism indicates almost pure thrust rupture,
consistent with the thrust nature of the Longmenshan fault
system.

Teleseismic P waves provide even stronger constraints on
the dip angle and depth of thrust events (Chen et al., 2012).
Here, we also invert source parameters of the mainshock using
the teleseismic P waves (Fig. 3a). The focal mechanism ob-
tained from teleseismic body-wave inversion was consistent
with that from regional waveforms (Fig. 3b). Teleseismic inver-
sion suggests a focal depth of 10 km, which is close to local
waveform inversion.

The same approach was adopted to determine source
parameters of strong aftershocks using local seismograms.

Considering their moderate magnitudes in size, however, we
use slight shorter period band-pass filters 0:02 ∼ 0:15 Hz
and 0:02 ∼ 0:12 Hz for Pnl and surface-wave segments respec-
tively. There are three M5� aftershocks, but the first one oc-
curred just five minutes after the mainshock. Therefore, it is
difficult to obtain a reliable focal mechanism because of con-
tamination from the coda of the mainshock. The focal mech-
anisms of the other two M5� aftershocks are similar to the
mainshock (Fig. 1), showing almost pure thrust. The detailed
parameters of the mainshock and the two aftershocks includ-
ing locations and focal mechanisms are listed in Table 1.

RELOCATIONS OF THE EARTHQUAKE
AFTERSHOCK SEQUENCE

Usually, the aftershock distribution is capable of resolving the
ambiguity between the rupture plane and auxiliary plane of
point-source solutions. Event locations in the CNSN catalog
were routinely determined from manual picks of P- and S-wave
arrivals. Typical location error ranges from a few kilometers to
dozens of kilometers, depending on the density of the seismic
network. The catalog aftershock zone is about 30 km long and
15 km wide, thus it is necessary to relocate the sequence with
higher location accuracy. Here we collected P and S arrival data
of aftershocks (M2:5�) from the local seismic network in the
first five days. In addition, portable stations were deployed after
22 April and their arrival data also were included for analysis.

The catalog locations are based on a 1D velocity model,
which does not take into account the effect of substantial lat-
eral velocity variation in our study region. To improve location
accuracy, we first employed the hybrid velocity models (the two
1D models mentioned in the section on source inversion) and
adopted Hypo2000 (Klein, 2002) to relocate the earthquake
sequence. The relocated aftershocks show a more compact
horizontal pattern than the catalog solution, and the sequence
showed a nearly northeast strike of 30°, and alternatively a
southwest strike of 210°. However, in the depth section, it
is still difficult to tell whether the sequence dips to the west
or east (Fig. 4a).

We further used the double-difference (DD) location
method to better determine relative locations of the entire se-
quence (Waldhauser and Ellsworth, 2000). The method solves
for event hypocenters and origin times using differential arrival
time data from catalog phase picks and/or waveform cross
correlations. An advantage of this method is that it is able to
remove the common-path anomalies for each event pair ob-
served at the same station. Considering the strong velocity
heterogeneities in the study region, we adopted a modified
version of the double-difference tomography code tomoDD,
which calculates the travel times in a 3D velocity model using
a spherical earth finite-difference travel time method (Zhang
et al., 2012). The 3D velocity model was developed with local
P and S first arrival times in our study region and revealed strong
lateral variations between tectonic units (Zhang et al., 2012).

Previous studies have demonstrated advantages of DD re-
location, for example, results from both synthetic- and real-data
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▴ Figure 1. Tectonic settings of Longmenshan fault system (after
Zhang and Li, 2010; Liu et al., 2013). Red star, Lushan earthquake
epicenter; black star, Wenchuan earthquake epicenter. Lower
hemisphere focal mechanisms of the mainshock and two
M5� aftershocks are also shown. The box on the inset marks
the study region in mainland China. F1, Wenchuan–Maowen fault;
F2, Beichuan fault; F3, Pengguan fault; F4, Dayi fault.
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studies show that relative location errors are reduced by a factor
of ∼2 using catalog arrival times alone. Moreover, the errors
can be further reduced by a factor of∼5–10 if differential times
from cross correlations are used (Hauksson and Shearer, 2005).
The CCC between all waveform pairs at the same station were
then determined using a 2.5 s window beginning 0.5 s before
the P arrival with a maximum time shift of 0.5 s. The time shift

corresponding to the maximum CCC is treated as the differ-
ential arrival time between two events. Only event pairs with
CCC greater than 0.70 were chosen for relocation. After the
DD relocation, travel-time residuals for the catalog differential
times and CCC times are ∼40 and ∼10 ms, respectively.

For each event pair, it requires at least eight links (or
observations at the same station) during relocation. After
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▴ Figure 2. (a) Local seismic stations used in waveform inversion. The red star, epicenter of the Lushan earthquake. (b) 1D Crustal
velocity models used in the waveform inversion and relocation. The S- and P-wave velocities are shown as dashed lines and solid
lines, respectively. Blue lines, plateau velocity model; red lines, basin model. (c) The misfit function versus focal depth. (d) Comparison
between black, observed; and red, synthetic seismograms. The numbers below the station names are the epicentral distances in
kilometers. The first number below each seismogram is the time shift between data and synthetics and the second number is the
cross-correlation coefficient in percentage.
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relocation using tomoDD, in total 165 events were located and
the rms travel-time residual for CCC times was reduced from
0.35 to about 0.01 s. The epicenter of the Lushan earthquake is
found to be situated at 30.299° N, 102.964° E with hypocentral
depth about 13 km (Fig. 4b). In order to analyze the depth
pattern along the strike (30°) of the elongated aftershock zone,

we project all the aftershocks along depth section AA0 (Fig. 5).
Overall, the events located in the southern part were shallower
than other parts, most of which are in the depth range of
8–12 km. In the central segment of AA0, the events are deeper
than 10 and down to 20 km. In the northern segment, the
depths of the events are more scattered than those in other
segments.

For pure thrust events, the ruptured fault plane and
auxiliary plane show the same strike. Therefore, it is necessary
to resolve the ambiguity in depth section perpendicular to the
strike (BB0, 120°). Obviously, the aftershocks as shown in box I
delineate a fault dipping to the northwest and the dip angle of
the fault plane is about 40°, which is close to that determined
by waveform inversions using regional and teleseismic seismo-
grams. Some aftershocks dipped southeast (box II, Fig. 5) may
be related to a backthrust fault. In general, earthquakes with
reverse faulting mechanism are followed by aftershocks on
the hanging-wall block, rarely on the footwall block (Chang
et al., 2000; Huang et al., 2008). Our relocation results con-
firmed this.

DISCUSSION AND CONCLUSION

We conducted waveform inversions using regional and tele-
seismic body-wave seismograms. A 12 km centroid depth of
the mainshock was obtained using waveform inversion with
regional seismograms, whereas the preferred centroid depth
was 10 km when using only teleseismic body-wave records.
Both results are close to the results of 12 km from joint inver-
sion using regional and teleseismic waveform records (Zeng
et al., 2013) and 10 km from teleseismic body-wave inversions
(Wang et al., 2013).

The USGS body-wave moment tensor solution
(http://earthquake.usgs.gov/earthquakes/eqarchives/fm/neic_
b000gcdd_fmt.php, last accessed November 2013) for this event
yields double-couple solution with the nodal planes angles
(strike/dip/rake) 216°/47°/93° and 32°/43°/87°. Our focal
mechanism results are consistent with the USGS solution.
These solutions confirm that the Lushan earthquake is a thrust
event. As compared to some continental thrust events such as
theWenchuan earthquake (33°) and the Northridge California
earthquake (35°; Hauksson et al., 1995), this earthquake oc-
curred on a high dip-angle fault. But its dip angle is less than
that of the 2003 San Simeon California earthquake (58°; Har-
debeck et al., 2004). Thus, it was difficult for the mainshock to
rupture the surface. After relocation few aftershocks are found
to occur above 8 km; this may imply that the fault rupture ter-
minated at a depth of about 8 km. It is also suggested that a
reverse fault with such a high dip angle would require high fluid
pressure to accommodate slip failure (Sibson and Xie, 1998).
The Lushan earthquake may be triggered by the buoyant migra-
tion of fluids similar to the case of the Wenchuan earthquake
(Zhou and He, 2009).

The relocation results show that the mainshock and after-
shocks predominantly occurred above 20 km in depth. In the
epicentral area, the crustal thickness is about 46 km (Wang
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▴ Figure 3. (a) Teleseismic stations used in this study. Red star,
epicenter of the Lushan earthquake. (b) Focal mechanism inverted
from teleseismic P-wave data. (c) Comparison between black, ob-
served and red, synthetic seismograms. The numbers below the
station names are the epicentral distances in kilometers and the
numbers above are the azimuths. See Figure 2 for more details.
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et al., 2007). Thus, this sequence appears to have taken place in
the upper crust. Usually, the seismicity is limited above the
crustal brittle–ductile transition zone. In the Longmenshan
fault zone, previous studies indicated that the brittle–ductile
transition occurs at depths of 15 ∼ 20 km (Zhou and He,
2009). Our relocation results are consistent with their studies.
The relocated sequence suggests the ruptured fault dips to
northwest. Combining this with the waveform inversion re-
sults, we propose that the nodal plane (strike 210°, dip 47°)
is the ruptured fault plane.

The Lushan earthquake occurred in the southern part of
the Longmenshan thrust belt. From west to east, there are four
major faults: Gengda–Longdong (Wenchuan–Maowen), Yanj-
ing–Wulong (Beichuan), Shuangshi–Dachuan (Pengguan),
and Dayi faults. These faults extend to the northeast striking
about 45° and dipping northwest with dip angles of 50°–70° at
shallow depths (Yang et al., 1999). There are also numerous
folds that trend parallel to the main thrust faults near source
regions (Jin et al., 2010). Relocation results reveal that the se-
quence occurs between the Pengguan fault and the Dayi fault.

Previous studies propose that Pengguan fault and Dayi fault are
both active faults (Yang et al., 1999; Densmore et al., 2007).
Although the surface projection of the dipping fault plane is
close to the Dayi fault, there is a substantial gap of 5 km or so
between them after taking the high dip angle of the faults into
account. In addition, up to now no northeast–southwest-strik-
ing surface rupture has been reported. Therefore, the Lushan
earthquake cannot be obviously associated with any identified
surficial geological faults. It appears that the Lushan earthquake
might have occurred on a blind thrust fault subparallel to the
Dayi fault that is associated with the folds, similar to the 1994
Mw 6.7 Northridge, California, earthquake (Hauksson et al.,
1995). However, more studies including geodetic investiga-
tions are still needed to illuminate details of the rupture process
and understand the seismogenic processes.
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